aboutsummaryrefslogtreecommitdiff
path: root/lineare_algebra.tex
blob: 63327e783583995618398bd5b02124b296f1f508 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
\section*{Relationen}

Sei $R := A \times B$ eine Relation.

\subsubsection*{Linkstotal}
$\forall a \in A \exists b \in B : (a,b)  \in R$

\subsubsection*{Rechtstotal / Surjektiv}
$\forall b \in B \exists a \in A : (a,b) \in R \text{ bzw. } f(a)=b$

\subsubsection*{Linkseindeutig / Injektiv}
$\forall a_1, a_2 \in A \forall b \in B :$ \newline
\hspace*{5mm} $(a_1,b) \in R \land (a_2,b) \in R \implies a_1=a_2$

\subsubsection*{Rechtseindeutig}
$\forall a \in A \forall b_1, b_2 \in B:$ \newline
\hspace*{5mm} $(a,b_1) \in R \land (a,b_2) \in R \implies b_1=b_2$

\subsection*{Eigenschaften von Relationen}

\begin{description}[leftmargin=!,labelwidth=25mm]
	\item[reflexiv] $\forall x \in M : (x, x) \in R$
	\item[symmetrisch] $\forall x, y \in M : xRy \Leftrightarrow yRx$
	\item[antisymmetrisch] $\forall x, y \in M : xRy \land yRx \Rightarrow x=y$
	\item[transitiv] $\forall x, y, z \in M : xRy \land yRz \Rightarrow xRz$
\end{description}

\subsection*{Äquivalenzrelationen}

Eine Relation $R$ auf Menge $M$ ist Äquivalenzrelation, wenn sie reflexiv, symmetrisch und transitiv ist.

\section*{Gruppen}

$\star : M \times M \rightarrow M$ ist Verknüpfung auf Menge $M$ abhängig der Argument-Reihenfolge. Das Tupel $(M, \star)$ ist Gruppe, wenn:

\begin{enumerate}[label=(\alph*)]
	\item $\star$ ist assoziativ
	\item $\exists e \in M \forall x \in M : x \star e = e \star x = x$
	\item $\forall x \in M \exists y \in M : x \star y = y \star x = e$
\end{enumerate}

Ist $\star$ kommutativ, dann $(M, \star)$ abelsche Gruppe.

\subsection*{Assoziativität}

$\forall m_1, m_2, m_3 \in M : (m_1 \star m_2) \star m_3 = m_1 \star (m_2 \star m_3)$

\subsection*{Kommutativität}

$\forall m_1, m_2 \in M : m_1 \star m_2 = m_2 \star m_1$

\subsection*{Untergruppen}

$(M, \star)$ ist Gruppe. $(H, \circ)$ ist Untergruppe, wenn:

\begin{enumerate}[label=(\alph*)]
	\item $H \subseteq M$
	\item $(H, \circ)$ ist Gruppe
	\item $\forall h_1, h_2 \in H : h_1 \circ h_2 = h_1 \star h_2$
\end{enumerate}

\subsubsection*{Untergruppenkriterium}

$H \subseteq G$ ist Untergruppe von $G$ wenn:

$H \neq \emptyset \land \forall h_1, h_2 \in H : h_1 \star h_2^{-1} \in H$

\subsection*{Gruppenhomomorphismen}

Seien $(G, \star)$ und $(H, \circ)$ Gruppen. $f: G \rightarrow H$ ist Gruppenhomomorphismus wenn:

$\forall g_1, g_2 \in G: f(g_1 \star g_2) = f(g_1) \circ f(g_2)$

\subsubsection*{Eigenschaften von Homomorphismen}

\begin{enumerate}[label=(\alph*)]
	\item $f(e_G) = e_H$
	\item $\forall g \in G : f(g^{-1}) = f(g)^{-1}$
	\item $f(G)$ ist Untergruppe von $H$
	\item $f \in Hom(G, H)$ ist genau dann injektiv, wenn $Kern(f) = \{e_G\}$
\end{enumerate}

\subsection*{Weitere Homomorphismen}

\begin{enumerate}[label=(\alph*)]
	\item $f : G \rightarrow G$ ist Endomorphismus
	\item Bijektives $f: G \rightarrow H$ ist Isomorphismus
	\item Bijektives $f \in End(V)$ ist Automorphismus
\end{enumerate}

\section*{Ringe}

$(R, +, *)$ ist Ring, wenn:

\begin{enumerate}[label=(\alph*)]
	\item $(R, +)$ ist abelsche Gruppe
	\item $*$ ist assoziativ
	\item $\forall x \in R : 1_R * x = x * 1_R = x$
	\item $x*(y+z) = (x*y)+(x*z)$
	\item $(y+z)*x = (y*x)+(z*x)$
\end{enumerate}

Ist $*$ kommutativ, $(R, +, *)$ ein kommutativer Ring.

\subsection*{Teilringe}

Unter $+$ und $*$ geschlossene Teilmenge $T \subseteq R$ ist Teilring von $R$.

\subsection*{Ringhomomorphismen}

$\phi : R \rightarrow S$ ist Ringhomomorphismus, wenn:

\begin{enumerate}[label=(\alph*)]
	\item $\forall x, y \in R : \phi(x +_R y) = \phi(x) +_S \phi(y)$
	\item $\forall x, y \in R : \phi(x *_R y) = \phi(x) *_S \phi(y)$
	\item $\phi(1_R) = 1_S$
\end{enumerate}

\section*{Körper}

Ein Körper ist kommutativer Ring $K$ mit $0_K \neq 1_K$ und für den jedes $x \neq 0_K$ invertierbar ist.

\section*{Matrizen}

\subsection*{Invertierbare Matrizen}

Für einen kommutativen Ring $R$ ist die "general linear Group":

$GL_p(R) := \{ A \in R^{p \times p} | \exists B \in R^{p \times p} : AB = BA = I_p \}$

Die Matrizen in $GL_p(R)$ heißen invertierbare / reguläre Matrizen.

\subsection*{Elementarmatrizen}

$$R^{2 \times 3} \ni E_{2,3} = \begin{pmatrix}
	0 & 0 & 0 & 0 \\
	0 & 0 & 1 & 0
\end{pmatrix}$$

\subsection*{Äquivalenz von Matrizen}

$\exists S \in GL_q(K), T \in GL_p(K) : B = T A S$ ($A, B \in K^{p \times q}$)

\subsection*{Ähnlichkeit von Matrizen}

$A, \tilde A \in K^{d \times d}$ ähnlich $\Leftrightarrow \exists S \in GL_d(K) : \tilde A = S^{-1}AS$

\subsection*{Determinante}

\begin{enumerate}[label=(\alph*)]
	\item $det(A) \neq 0 \Leftrightarrow A \text{ ist invertierbar}$
	\item $det(A*B) = det(A) * det(B)$
	\item $det(A)^{-1} = det(A)^{-1}$ falls $A \in GL_n(K)$
	\item $det(A) = det(A^T)$
\end{enumerate}

\subsubsection*{Determinante von Blockmatrizen}

$$det(\begin{pmatrix}
	A & B \\
	0 & C
\end{pmatrix}) = det(A) * det(C)$$

\section*{Vektorräume}

Ein $K$-Vektorraum ist kommutative Gruppe $(V, +)$ mit skalarer Multiplikation $* : K \times V \rightarrow V, (a, v) \mapsto a * v$ sowie:

\begin{enumerate}[label=(\alph*)]
	\item $\forall v \in V : 1_K * v = v$
	\item $\forall a, b \in K \forall v \in V : a*(b*v)=(a*b)*v$
	\item $\forall a, b \in K \forall u, v \in V : a*(u+v)=a*u+a*v$
	\item $\forall a, b \in K \forall u, v \in V : (a+b)*v=a*v+b*v$
\end{enumerate}

\subsection*{Untervektorräume}

$K$-Untervektorraum $U$ von $V$ ist Teilmenge $U \subseteq V$ die bzgl. Addition Untergruppe von $V$ ist und für die gilt:

$\forall a \in K, u \in U : a*u \in U$ (d.h. skalare Multiplikation geschlossen)

\subsubsection*{Untervektorraumkriterium}

Seien $K$ Körper, $V$ $K$-Vektorraum und $U \subseteq V$. Dann ist äquivalent:

\begin{enumerate}[label=(\alph*)]
	\item $U$ ist Untervektorraum von $V$
	\item $U \neq \emptyset$, $\forall u_1, u_2 \in U : u_1 + u_2 \in U$ und $\forall a \in K, u \in U : a*u \in U$
\end{enumerate}

\subsubsection*{$\phi$-invariante Unterräume}

$U \subset V$ ist $\phi$-invariant, wenn $\phi(U) \subset U$.

\subsection*{Homomorphismen}

Seien $V, W$ zwei $K$-Vektorräume. $\phi : V \rightarrow W$ ist Vektorraumhomomorphismus respektive $K$-lineare Abbildung, wenn:

\begin{enumerate}[label=(\alph*)]
	\item $\forall u, v \in  V : \phi(u+v) = \phi(u)+\phi(v)$
	\item $\forall a \in K, v \in V : \phi(a*v) = a*\phi(v)$
\end{enumerate}

$Rang(\phi) := dim(Bild(\phi))$ mit $\phi \in Hom(V, W)$

\subsection*{Dualräume}

Sei $V$ ein $K$-Vektorraum. Die Menge aller linearen Abbildungen $V \rightarrow K$ ist der Dualraum: $V^* := \{f: V \rightarrow K | f \text{ ist linear}\}$.

$f \in V^*$ werden als Linearformen bezeichnet.

\subsection*{Basen}

Teilmenge $B \subseteq V$ ist Basis von $V$, wenn sich $\foral