diff options
-rw-r--r-- | lid_driven_cavity.py | 235 |
1 files changed, 235 insertions, 0 deletions
diff --git a/lid_driven_cavity.py b/lid_driven_cavity.py new file mode 100644 index 0000000..cfaf0ba --- /dev/null +++ b/lid_driven_cavity.py @@ -0,0 +1,235 @@ +import pyopencl as cl +mf = cl.mem_flags + +from string import Template + +import numpy +import matplotlib.pyplot as plt + +import time + +kernel = """ +float constant w[9] = { + 1./36., 1./9., 1./36., + 1./9. , 4./9., 1./9. , + 1./36 , 1./9., 1./36. +}; + +unsigned int indexOfDirection(int i, int j) { + return (i+1) + 3*(1-j); +} + +unsigned int indexOfCell(int x, int y) +{ + return y * $nX + x; +} + +unsigned int idx(int x, int y, int i, int j) { + return indexOfDirection(i,j)*$nCells + indexOfCell(x,y); +} + +__global float f_i(__global __read_only float* f, int x, int y, int i, int j) { + return f[idx(x,y,i,j)]; +} + +float comp(int i, int j, float2 v) { + return i*v.x + j*v.y; +} + +float sq(float x) { + return x*x; +} + +float f_eq(float w, float d, float2 v, int i, int j, float dotv) { + return w * d * (1.f + 3.f*comp(i,j,v) + 4.5f*sq(comp(i,j,v)) - 1.5f*dotv); +} + +__kernel void collide_and_stream(__global __write_only float* f_a, + __global __read_only float* f_b, + __global __write_only float* moments, + __global __read_only int* material) +{ + const unsigned int gid = indexOfCell(get_global_id(0), get_global_id(1)); + + const uint2 cell = (uint2)(get_global_id(0), get_global_id(1)); + + const int m = material[gid]; + + if ( m == 0 ) { + return; + } + + float f0 = f_i(f_b, cell.x+1, cell.y-1, -1, 1); + float f1 = f_i(f_b, cell.x , cell.y-1, 0, 1); + float f2 = f_i(f_b, cell.x-1, cell.y-1, 1, 1); + float f3 = f_i(f_b, cell.x+1, cell.y , -1, 0); + float f4 = f_i(f_b, cell.x , cell.y , 0, 0); + float f5 = f_i(f_b, cell.x-1, cell.y , 1, 0); + float f6 = f_i(f_b, cell.x+1, cell.y+1, -1,-1); + float f7 = f_i(f_b, cell.x , cell.y+1, 0,-1); + float f8 = f_i(f_b, cell.x-1, cell.y+1, 1,-1); + + const float d = f0 + f1 + f2 + f3 + f4 + f5 + f6 + f7 + f8; + + float2 v = (float2)( + (f5 - f3 + f2 - f6 + f8 - f0) / d, + (f1 - f7 + f2 - f6 - f8 + f0) / d + ); + + if ( m == 2 ) { + v = (float2)(0.0f, 0.0f); + } + + if ( m == 3 ) { + v = (float2)(0.1f, 0.0f); + } + + const float dotv = dot(v,v); + + f0 += $omega * (f_eq(w[0], d,v,-1, 1, dotv) - f0); + f1 += $omega * (f_eq(w[1], d,v, 0, 1, dotv) - f1); + f2 += $omega * (f_eq(w[2], d,v, 1, 1, dotv) - f2); + f3 += $omega * (f_eq(w[3], d,v,-1, 0, dotv) - f3); + f4 += $omega * (f_eq(w[4], d,v, 0, 0, dotv) - f4); + f5 += $omega * (f_eq(w[5], d,v, 1, 0, dotv) - f5); + f6 += $omega * (f_eq(w[6], d,v,-1,-1, dotv) - f6); + f7 += $omega * (f_eq(w[7], d,v, 0,-1, dotv) - f7); + f8 += $omega * (f_eq(w[8], d,v, 1,-1, dotv) - f8); + + f_a[0*$nCells + gid] = f0; + f_a[1*$nCells + gid] = f1; + f_a[2*$nCells + gid] = f2; + f_a[3*$nCells + gid] = f3; + f_a[4*$nCells + gid] = f4; + f_a[5*$nCells + gid] = f5; + f_a[6*$nCells + gid] = f6; + f_a[7*$nCells + gid] = f7; + f_a[8*$nCells + gid] = f8; + + moments[0*$nCells + gid] = d; + moments[1*$nCells + gid] = v.x; + moments[2*$nCells + gid] = v.y; +}""" + +class D2Q9_BGK_Lattice: + def idx(self, x, y): + return y * self.nX + x; + + def __init__(self, nX, nY): + self.nX = nX + self.nY = nY + self.nCells = nX * nY + self.tick = True + + self.platform = cl.get_platforms()[0] + self.context = cl.Context(properties=[(cl.context_properties.PLATFORM, self.platform)]) + self.queue = cl.CommandQueue(self.context) + + self.np_pop_a = numpy.ndarray(shape=(9, self.nCells), dtype=numpy.float32) + self.np_pop_b = numpy.ndarray(shape=(9, self.nCells), dtype=numpy.float32) + + self.np_moments = numpy.ndarray(shape=(3, self.nCells), dtype=numpy.float32) + self.np_material = numpy.ndarray(shape=(self.nCells, 1), dtype=numpy.int32) + + self.setup_geometry() + + self.equilibrilize() + #self.setup_anomaly() + + self.cl_pop_a = cl.Buffer(self.context, mf.READ_WRITE | mf.USE_HOST_PTR, hostbuf=self.np_pop_a) + self.cl_pop_b = cl.Buffer(self.context, mf.READ_WRITE | mf.USE_HOST_PTR, hostbuf=self.np_pop_b) + + self.cl_material = cl.Buffer(self.context, mf.READ_ONLY | mf.USE_HOST_PTR, hostbuf=self.np_material) + self.cl_moments = cl.Buffer(self.context, mf.READ_WRITE | mf.USE_HOST_PTR, hostbuf=self.np_moments) + + self.build_kernel() + + def setup_geometry(self): + self.np_material[:] = 0 + for x in range(1,self.nX-1): + for y in range(1,self.nY-1): + if x == 1 or y == 1 or x == self.nX-2 or y == self.nY-2: + self.np_material[self.idx(x,y)] = 2 + else: + self.np_material[self.idx(x,y)] = 1 + + for x in range(1,self.nX-1): + self.np_material[self.idx(x,1)] = 3 + + def equilibrilize(self): + self.np_pop_a[(0,2,6,8),:] = 1./36. + self.np_pop_a[(1,3,5,7),:] = 1./9. + self.np_pop_a[4,:] = 4./9. + + self.np_pop_b[(0,2,6,8),:] = 1./36. + self.np_pop_b[(1,3,5,7),:] = 1./9. + self.np_pop_b[4,:] = 4./9. + + def setup_anomaly(self): + bubbles = [ [ self.nX//4, self.nY//4], + [ self.nX//4,self.nY-self.nY//4], + [self.nX-self.nX//4, self.nY//4], + [self.nX-self.nX//4,self.nY-self.nY//4] ] + + for x in range(0,self.nX-1): + for y in range(0,self.nY-1): + for [a,b] in bubbles: + if numpy.sqrt((x-a)*(x-a)+(y-b)*(y-b)) < self.nX//10: + self.np_pop_a[:,self.idx(x,y)] = 1./24. + self.np_pop_b[:,self.idx(x,y)] = 1./24. + + def build_kernel(self): + self.program = cl.Program(self.context, Template(kernel).substitute({ + 'nX' : self.nX, + 'nY' : self.nY, + 'nCells': self.nCells, + 'omega': 1.0/0.56 + })).build() #'-cl-single-precision-constant -cl-fast-relaxed-math') + + def evolve(self): + if self.tick: + self.tick = False + self.program.collide_and_stream(self.queue, (self.nX,self.nY), (64,1), self.cl_pop_a, self.cl_pop_b, self.cl_moments, self.cl_material) + else: + self.tick = True + self.program.collide_and_stream(self.queue, (self.nX,self.nY), (64,1), self.cl_pop_b, self.cl_pop_a, self.cl_moments, self.cl_material) + + def sync(self): + self.queue.finish() + + def show(self, i): + cl.enqueue_copy(LBM.queue, LBM.np_moments, LBM.cl_moments).wait(); + + velocity = numpy.ndarray(shape=(self.nY-2, self.nX-2)) + for y in range(1,self.nY-1): + for x in range(1,self.nX-1): + velocity[y-1,x-1] = numpy.sqrt(self.np_moments[1,self.idx(x,y)]**2 + self.np_moments[2,self.idx(x,y)]**2) + + plt.imshow(velocity, cmap=plt.get_cmap("seismic")) + plt.savefig("result/velocity_" + str(i) + ".png") + + +def MLUPS(cells, steps, time): + return cells * steps / time * 1e-6 + +nUpdates = 100000 +nStat = 1000 + +print("Initializing simulation...\n") + +LBM = D2Q9_BGK_Lattice(256, 256) + +print("Starting simulation using %d cells...\n" % LBM.nCells) + +lastStat = time.time() + +for i in range(1,nUpdates+1): + if i % nStat == 0: + LBM.sync() + #LBM.show(i) + print("i = %4d; %3.0f MLUPS" % (i, MLUPS(LBM.nCells, nStat, time.time() - lastStat))) + lastStat = time.time() + + LBM.evolve() + +LBM.show(nUpdates) |