aboutsummaryrefslogtreecommitdiff
path: root/content/dgl.tex
blob: 804af08bae478035702402a10a251e64991ca4db (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
\section*{Anfangswertprobleme}

Seien \(\J \subseteq \R\) ein Intervall, \(t_0 \in \J\) mit \(t_0 < \sup \J\), \(D \subseteq \R^m\) offen, \(f \in C(\J \times D, \R^m)\) und \(u_0 \in D\).

\vspace*{-4mm}
\begin{align*}
	u'(t)  &= f(t, u(t)), t\geq t_0, t\in \J \\
	u(t_0) &= u_0
\end{align*}

Für das Anfangswertproblem wird ein \(t_1 \in \J\) mit \(t_1 > t_0\) und eine eindeutige Lösung \(u \in C^1([t_0, t_1], \R^m)\) auf \([t_0, t_1]\) gesucht.

\subsection*{Lokale Lipschitzstetigkeit im Kontext}

Sei \(f \in C(\J \times D, \R^k)\), \(D \subseteq \R^m\) offen und es ex. alle \(\frac{\partial}{\partial x_j} f \in C(\J \times D, \R^k)\) für \(j \in \{1, \hdots, m\}\).

Dann ist \(f\) lokal Lipschitz in \(x\).

\subsection*{Picard-Lindelöf (lokal)}

Seien \(\J\) Intervall, \(D \subseteq \R^m\) offen, \(f \in C(\J \times D, \R^m)\) lokal Lipschitz in \(x\), \(u_0 \in D\), \(t_0 \in \J\) mit \(t_0 < \sup \J\). Dann gelten:

\begin{enumerate}[label=(\alph*)]
	\item \(\exists t_1 > t_0 \) mit \(t_1 \in \J\) und eind. Lsg. \(u\)  auf \([t_0, t_1]\) von \(u'(t) = f(t, u(t))\) mit \(u(t_0) = u_0\)
	\item \(u'(t) = f(t, u(t))\) mit \(u(t_0) = u_0\) besitze zwei Lsg. \(v_1\) und \(v_2\) auf \([t_0, T_1] \subseteq \J\) bzw. \([t_0, T_2] \subseteq \J\). Dann stimmen \(v_1\) und \(v_2\) auf \([t_0, T_3]\) mit \(T_3 = \min\{T_1, T_2\}\) überein.
\end{enumerate}

\subsection*{Picard-Lindelöf (maximal)}

Unter den Voraussetzungen von Picard-Lindelöf (lokal) sei \(u_0 \in D\), dann gilt:

\begin{enumerate}[label=(\alph*)]
	\item \(\exists\) max. Existenzzeit \(\overline t(u_0) \in (t_0, \sup \J]\) und eine eindeutige maximale Lösung \(u\) von \(u'(t) = f(t, u(t))\) mit \(u(t_0) = u_0\) auf \([t_0, \overline t(u_0))\)
	\item Wenn \(\overline t(u_0) < \sup \J\), dann \(\exists t_n \in (t_0, \overline t(u_0))\) mit \(\lim_{n \to \infty} t_n = \overline t(u_0)\) so, dass die Blow-Up Bedingung erfüllt ist: \(\lim_{n \to \infty} |u(t_n)|_n = \infty\) oder \(\lim_{n \to \infty} \inf_{x \in \partial D} |u(t_n) - x|_2 = 0\)
\end{enumerate}

\subsection*{Trennung der Variablen}

Sei \(u'(t)=g(t)h(u(t))\) mit \(u(t_0)=u_0\) ein AWP mit \(g \in C(\R)\), \(h \in C((a, b), \R)\), \(u_0 \in (a, b)\) und \(h(u_0) \neq 0\). \(u\) ist Lösung, wenn:

\(\forall t \in \J : u(t) \in (a, b)\), \(u \in C^1(\J, \R)\) und \(t_0 \in \J\).
\[ u \text{ ist Lösung } \Rightarrow \int_{t_0}^t g(s) ds = \int_{u_0}^{u(t)} \frac{1}{h(x)} dx \]

\subsection*{Lemma von Grönwall}

Seien \(b \in [0,\infty], \phi \in C([0,b),\R)\) und \(\alpha, \beta \geq 0\).
\[\psi(t) := \alpha + \beta \int_0^t \phi(s) ds \text{ für } t \in [0,b)\]
Weiter gelte \(\phi \leq \psi\) auf \([0,b)\). Dann gilt:
\[\forall t \in [0,b) : \phi(t) \leq \alpha \exp(\beta t)\]

\subsection*{Eindeutige Lösbarkeit}

Sei \(D = (a,b) \times \R^m\) mit \(-\infty \leq a < b \leq \infty\) und \(f : D \to \R^k\) erfülle die Vor. von Picard-Lindelöf. Gilt weiter \(\|f(t,x)\| \leq \alpha + \beta \|x\|\) für \(\alpha, \beta \geq 0\), dann ist das AWP auf \((a,b)\) eindeutig lösbar.